Description
Newtonian Mechanics in Moving Coordinate Systems.- Newton's Equations in a Rotating Coordinate System.- Free Fall on the Rotating Earth.- Foucault's Pendulum.- Mechanics of Particle Systems.- Degrees of Freedom.- Center of Gravity.- Mechanical Fundamental Quantities of Systems of Mass Points.- Vibrating Systems.- Vibrations of Coupled Mass Points.- The Vibrating String.- Fourier Series.- The Vibrating Membrane.- Mechanics of Rigid Bodies.- Rotation About a Fixed Axis.- Rotation About a Point.- Theory of the Top.- Lagrange Equations.- Generalized Coordinates.- D'Alembert Principle and Derivation of the Lagrange Equations.- Lagrange Equation for Nonholonomic Constraints.- Special Problems.- Hamiltonian Theory.- Hamilton's Equations.- Canonical Transformations.- Hamilton-Jacobi Theory.- Extended Hamilton-Lagrange Formalism.- Extended Hamilton-Jacobi Equation.- Nonlinear Dynamics.- Dynamical Systems.- Stability of Time-Dependent Paths.- Bifurcations.- Lyapunov Exponents and Chaos.- Systems with Chaotic Dynamics.- On the History of Mechanics.- Emergence of Occidental Physics in the Seventeenth Century.
Author: Walter Greiner
Publisher: Springer
Published: 12/17/2009
Pages: 580
Binding Type: Paperback
Weight: 2.65lbs
Size: 7.60h x 10.10w x 1.30d
ISBN13: 9783642034336
ISBN10: 3642034330
BISAC Categories:
- Science | Mechanics | General
- Mathematics | Differential Equations | General
- Mathematics | Applied
Author: Walter Greiner
Publisher: Springer
Published: 12/17/2009
Pages: 580
Binding Type: Paperback
Weight: 2.65lbs
Size: 7.60h x 10.10w x 1.30d
ISBN13: 9783642034336
ISBN10: 3642034330
BISAC Categories:
- Science | Mechanics | General
- Mathematics | Differential Equations | General
- Mathematics | Applied