Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems


Price:
Sale price$89.99

Description

Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems.

With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started.

  • Use Scikit-learn to track an example ML project end to end
  • Explore several models, including support vector machines, decision trees, random forests, and ensemble methods
  • Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection
  • Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers
  • Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning


Author: Aurélien Géron
Publisher: O'Reilly Media
Published: 11/08/2022
Pages: 861
Binding Type: Paperback
Weight: 2.97lbs
Size: 9.19h x 7.00w x 1.71d
ISBN13: 9781098125974
ISBN10: 1098125975
BISAC Categories:
- Computers | Data Science | Neural Networks
- Computers | Artificial Intelligence | Computer Vision & Pattern Recognit
- Computers | Artificial Intelligence | Natural Language Processing

About the Author

Aurélien Géron is a Machine Learning consultant. A former Googler, he led YouTube's video classification team from 2013 to 2016. He was also a founder and CTO of Wifirst from 2002 to 2012, a leading Wireless ISP in France, and a founder and CTO of Polyconseil in 2001, a telecom consulting firm.

Before this he worked as an engineer in a variety of domains: finance (JP Morgan and Société Générale), defense (Canada's DOD), and healthcare (blood transfusion). He published a few technical books (on C++, WiFi, and Internet architectures), and was a Computer Science lecturer in a French engineering school.

A few fun facts: he taught his 3 children to count in binary with their fingers (up to 1023), he studied microbiology and evolutionary genetics before going into software engineering, and his parachute didn't open on the 2nd jump.