Description
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
- Classification, using the Titanic dataset
- Cleaning data and dealing with missing data
- Exploratory data analysis
- Common preprocessing steps using sample data
- Selecting features useful to the model
- Model selection
- Metrics and classification evaluation
- Regression examples using k-nearest neighbor, decision trees, boosting, and more
- Metrics for regression evaluation
- Clustering
- Dimensionality reduction
- Scikit-learn pipelines
Author: Matt Harrison
Publisher: O'Reilly Media
Published: 09/24/2019
Pages: 320
Binding Type: Paperback
Weight: 0.52lbs
Size: 7.00h x 4.25w x 0.67d
ISBN13: 9781492047544
ISBN10: 1492047546
BISAC Categories:
- Computers | Image Processing
- Computers | Artificial Intelligence | Natural Language Processing
- Computers | Data Science | Neural Networks
About the Author
Matt runs MetaSnake, a Python and Data Science training and consulting company. He has over 15 years of experience using Python across a breadth of domains: Data Science, BI, Storage, Testing and Automation, Open Source Stack Management, and Search.