Inside Interesting Integrals: A Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devili


Price:
Sale price$56.24

Description

Preface.- 1. Introduction.- 1.1 The Riemann Integral.- 1.2 An Example of Riemann Integration.- 1.3 The Lebesgue Integral.- 1.4 'Interesting' and 'Inside'.- 1.5 An Example of a Trick.- 1.6 Singularities.- 1.7 Dalzell's Integral.- 1.8 Where Integrals Come From.- 1.9 Last Words.- 1.10 Challenge Problems.- 2. 'Easy' Integrals.- 2.1 Six 'Easy' Warm-ups.- 2.2 A New Trick.- 2.3 Two Old Tricks, Plus a New One.- 2.4 Another Old Trick: Euler's Log-Sine Integral.- 2.5 Challenge Problems.- 3. Feynman's Favorite Trick.- 3.1 Leibniz's Formula.- 3.2 Dirichlet's Amazing Integral.- 3.3 Frullani's Integral.- 3.4 The Flip-Side of Feynman's Trick.- 3.5 Combining Two Tricks.- 3.6 Uhler's Integral and Symbolic Integration.- 3.7 The Probability Integral Revisited.- 3.8 Dini's Integral.- 3.9 Feynman's Favorite Trick Solves a Physics Equation .- 3.10 Challenge Problems.- 4. Gamma and Beta Function Integrals.- 4.1 Euler's Gamma Function.- 4.2 Wallis' Integral and the Beta Function.- 4.3 Double Integration Reversal.- 4.4 The Gamma Function Meets Physics.- 4.5 Challenge Problems.- 5. Using Power Series to Evaluate Integrals.- 5.1 Catalan's Constant.- 5.2 Power Series for the Log Function.- 5.3 Zeta Function Integrals.- 5.4 Euler's Constant and Related Integrals.- 5.5 Challenge Problems.- 6. Seven Not-So-Easy Integrals.- 6.1 Bernoulli's Integral .- 6.2 Ahmed's Integral.- 6.3 Coxeter's Integral.- 6.4 The Hardy-Schuster Optical Integral.- 6.5 The Watson/van Peype Triple Integrals.- 6.6 Elliptic Integrals in a Physical Problem.- 6.7 Challenge Problems.- 7. Using √(-1) to Evaluate Integrals.- 7.1 Euler's Formula.- 7.2 The Fresnel Integrals.- 7.3 (3) and More Log-Sine Integrals .- 7.4 (2), At Last!.- 7.5 The Probability Integral Again.- 7.6 Beyond Dirichlet's Integral.- 7.7 Dirichlet Meets the Gamma Function.- 7.8 Fourier Transforms and Energy Integrals.- 7.9 'Weird' Integrals from Radio Engineering.- 7.10 Causality and Hilbert Transform Integrals.- 7.11 Challenge Problems.- 8. Contour Integration.- 8.1 Prelude.- 8.2 Line Integrals.- 8.3 Functions of a Complex Variable.- 8.4 The Cauchy-Riemann Equations and Analytic Functions.- 8.5 Green's Integral Theorem.- 8.6 Cauchy's First Integral Theorem.- 8.7 Cauchy's Second Integral Theorem.- 8.8 Singularities and the Residue Theorem.- 8.9 Integrals with Multi-valued Integrands.- 8.10 Challenge Problems.- 9. Epilogue.- 9.1 Riemann, Prime Numbers, and the Zeta Function.- 9.2 Deriving the Functional Equation for (s).- 9.3 Challenge Questions.- Solutions to the Challenge Problems.

Author: Paul J. Nahin
Publisher: Springer
Published: 06/28/2020
Pages: 503
Binding Type: Paperback
Weight: 1.68lbs
Size: 9.21h x 6.14w x 1.12d
ISBN13: 9783030437879
ISBN10: 3030437876
BISAC Categories:
- Science | Physics | Mathematical & Computational
- Technology & Engineering | Engineering (General)
- Mathematics | Mathematical Analysis

About the Author

Paul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the author of 21 books on mathematics, physics, and the history of science, published by Springer, and the university presses of Princeton and Johns Hopkins. He received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics (for his paper "The Mysterious Mr. Graham," The Mathematical Intelligencer, Spring 2016). He gave the invited 2011 Sampson Lectures in Mathematics at Bates College, Lewiston, Maine.