Optical and Electrical Properties of Nanoscale Materials


Price:
Sale price$191.24

Description

Introduction - Optical Properties of Solids.- The Dielectric Function at Optical Frequencies- A First Look.- Introduction to the Electronic Band Structure of Solids.- Microscopic Theory of the Dielectric Function.- Excitons and Excitonic Effects in Semiconductors.- Optical Measurements.- Hall Effect Measurements of 2D Electron Gas and 2D Materials.- Optical and Electrical Properties of van der Waals 2D Nanoscale Materials.- The Optical and Electrical Properties of Topological Materials.



Author: Alain Diebold, Tino Hofmann
Publisher: Springer
Published: 01/12/2023
Pages: 484
Binding Type: Paperback
Weight: 1.55lbs
Size: 9.21h x 6.14w x 1.02d
ISBN13: 9783030803254
ISBN10: 3030803252
BISAC Categories:
- Technology & Engineering | Materials Science | Electronic Materials
- Science | Nanoscience
- Science | Spectroscopy & Spectrum Analysis

About the Author

Alain Diebold is Professor Emeritus and an Empire Innovation Professor of Nanoscale Science in the College of Nanoscale Science and Engineering at the State University of New York's Polytechnic Institute. His primary research areas include nanoscale characterization and metrology as well as materials science at the nanoscale using optical and X-Ray measurements, electron microscopy, and semiconductor metrology. One part of this research involves extending these concepts to new materials and structures.

Dr. Diebold earned his BS in Chemistry from Indiana University-Purdue University, and holds a PhD in Chemistry from Purdue University where his thesis topic was Statistical Mechanics of Gas-Solid Surface Scattering. He is Associate Editor of the IEEE Transactions on Semiconductor Manufacturing. A frequent presenter at international conferences, Dr. Diebold has been named a Fellow of both the International Society for Optics and Photonics (SPIE) and the American Vacuum Society (AVS).

Tino Hofmann is an assistant professor at the University of North Carolina at Charlotte. His expertise is in the area of complex materials' characterization. His research work covers a broad range of experimental condensed matter physics and photonics with a strong emphasis on characterizing the anisotropic optical response of spatially-coherent nanostructured materials in the visible and THz spectral range. A part of his research involves the design and construction of optical instruments for the characterization of metamaterials and metasurfaces.
Dr. Hofmann received both his Dr. rer. nat. in Physics and his Diploma in Physics, from the University Leipzig, Germany. Dr. Hofmann is the recipient of a 2014 EU Marie Curie Fellowship and A VINNMER Fellow (Fellowship of the Swedish innovation agency VINNOVA).